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Abstract

Consider a tree that is composed of wood, which is orthotropic with respect to the cylindrical coordinate axes, where
the z-axis is directed up the center of the tree. When a section of a tree is considered as a Relaxed Saint-Venant’s
Problem the stresses in the plane of a transverse cross section will equal zero. By allowing some of, or all of the
compliance coefficients to be functions of the radial coordinate r, the structure of the stress functions can be funda-
mentally altered. If the compliance coefficient in the z-direction (Ss333) is allowed to remain constant, the S,, and Sy,
shear stresses will be functions of the coordinates, dimensions, applied loads, and compliance coefficients, while the
other stresses will only be functions of the coordinates, dimensions and applied loads. If S3333 is also allowed to be a
function of r, then all the nonzero stresses will be functions of the coordinates, dimensions, applied loads, and com-
pliance coefficients.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lyons et al. (2002a) derived the stress and displacement equations for a cylindrical section of a tree
subject to loads independent of x3, and with compliance coefficients (in cylindrical coordinates) that were
constant throughout the section. The constraints placed on the compliance coefficients when assuming they
were constant, produced a compliance tensor that acted similarly to one for a transversely isotropic ma-
terial. Lyons et al. (2002b) noted that the published values for the compliance tensor for Pseudotsuga
menziesii (Douglas fir) precludes the possibility of the compliance tensor being constant in the cross section
of a tree. Lyons et al. (2002b) proposed a compliance tensor that was linearly dependent on the radial
coordinate r.

The objectives of this paper are to derive the stress equations for a cylindrical section of a tree for two
different constitutive equations that allow for different levels of heterogeneity. The first constitutive
equation considered will be similar to the one proposed by Lyons et al. (2002b) where only the minimum

" Tel.: +1-604-822-3559; fax: +1-604-822-9106.
E-mail address: kevlyons@interchange.ubc.ca (C.K. Lyons).

0020-7683/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(02)00381-5


mail to: kevlyons@interchange.ubc.ca

4616 C.K. Lyons | International Journal of Solids and Structures 39 (2002) 46154625

dependence on r was assumed in order to allow for the nonunique strains at » = 0. The second constitutive
equation to be considered is similar to the constitutive equation proposed by Lyons et al. (2002b), except
that the compliance and elasticity coefficients in the z-direction will also be linear functions of the radial
coordinate r.

2. Constitutive equations and problem statement

The following constitutive equation in cylindrical coordinates was proposed by Lyons et al. (2002b) and
will be used to model a cylindrical section of a tree (prime denotes in cylindrical coordinates).

E} =SSt = Sy + 1" Miju ]Sy
in cylindrical coordinates (2.1
Sy = Cimby = [@ + r*@} E,

Here Ej; and S;; are the infinitesimal strain tensor and Cauchy’s stress tensor, S,
pliance and elasticity tensors, and S, M, Ciju, and Ky, are constants.

Lyons et al. (2002a) transformed the elasticity and compliance tensors from a cylindrical basis to a
Cartesian basis,

Cijk/ = QmianQerA‘]C;nnrs
Sijkl = QmianQerSlS;nan

where Q;; = 0;;(0) is a clockwise rotation about the x;-axis. The complete list of transformation equa-
tions is included in Appendix A. Given (2.2) the constitutive equations can be written in Cartesian coor-
dinates

Sij = CiyuEr, Eiyj = SijuSu (2-3)

4
; and Cj, are the com-

(2.2)

Lyons et al. (2002b) showed the transformed compliance tensor could be simplified so that some of the
coeflicients could remain constant, while still satisfying the constraints imposed by the nonunique strains in
the ey and e, directions. The simplified equations for the transformed compliance tensor are included in
Appendix B.

With the compliance coefficients transformed into Cartesian coordinates, Eq. (B.1), it is possible to use
Iesan’s (1987) formulation to solve the relaxed Saint-Venant’s problem. Lyons et al. (2002a) considered a
cylindrical section of a tree as a relaxed Saint-Venant’s problem with loads independent of x;. The state-
ment of the relaxed Saint-Venant’s problem will be repeated here for convenience.

From now on in this paper, Greek indices will range from 1 to 2, while Latin indices range from 1 to 3
unless otherwise specified. Summation notation is used for repeated indices, and a comma followed by a
subscript will indicate a partial derivative with respect to the coordinate. Note the following special no-
tations will be used, the Kronecker delta function (d;;), and the two-dimensional alternator symbol (e).

Consider a cylindrical section of a tree as a cantilever beam with constant cross sections (Fig. 1). Let X
be the open cross section at x3 = 0, let 2, be the open cross section at x; = 4, and let X be an arbitrary open
cross section with normal x;. The lateral surface of the cylinder will be I1, while the boundary of an ar-
bitrary cross section is I". The closure of an arbitrary cross section will be ¥ = X U T.

The resultant loads applied to the cross section at x; = 0 are the forces F and the moments M, and these
are represented by integral functions of the displacement vector u, where f(u) = F and m(u) = M. The
lateral surface of the cylinder is unloaded, the cross section at X is fixed, and body loads will be ignored in
this analysis. The problem in Fig. 1 is of the class P, as defined by Iesan (1987), where the resultant loads
acting on X are independent of x; and F, = 0.
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Fig. 1. Cylindrical cantilever beam subject to loads independent of x;.

Lyons et al. (2002a) presented the total displacements as

where u; are the displacements resulting from strain, and »/ are displacement resulting from a rigid body
motion. The displacements resulting from strain, derived in a manner similar to that used by Iesan (1987),
are

2
U = Ojy | — az% + ep,auxpxs| + 0nlayx, + azlxs + W (2.5)
where a, are constants that will have to be determined using the boundary conditions, and W = W(x;, x,) is
a vector composed of the functions of integration.
Since the body forces are being ignored and the lateral surface of the cylinder is unloaded, the necessary
conditions for a solution imply that the sum of the stress fields acting on X, must be in equilibrium with the
resultant loads acting on X therefore,

/ eaﬁangﬁ(u) da = —ms (ll) = —]‘/[37 / x1S33 (ll) da = eaﬁmﬁ(u) = e“,;M/g (26)
X 2,

Substitute (2.5) into the definition of the infinitesimal strain tensor, the resulting strains are

En(u) =W, Ex(u)=W,, E;xl)=(ax,+a), Ex(u)=1iax +W,],
E3(u) :%[—a4x2+ Wiil, En(u) :%[th +Ws, ] (2.7)

Substitute the strain tensor (2.7) into the constitutive equation (2.3), then the stress tensor in Cartesian
coordinates becomes

Sy(w) = Cys(apx, + a3) — asCijzeqpxp + T;;(W) (2.8)

The T;;(W) = Cijx, W; ., are the stresses resulting from the displacement vector W, which is independent of
x3 and so forms a generalized plain strain problem. Iesan (1987) found that the generalized plane strain
problem could be separated into four auxiliary problems T,-E.‘”) (p =1,2,3,4), which are defined by the
following equilibrium equations (1)—(3) and boundary conditions (4)—(6).
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(1) T;Ot )(W)m + (Cia33xﬁ)m =0
(2) 7;(13)(W)7a + (Cia33)7o< =0
4
(3) Tz(ot )(W)m - ePﬁ(Ciacp}xﬂ)m =0 (29)
(4) Tziﬁ) (W)n, = — i033X Ny
(5) T;(o?)(w)nd = —Cin33hy
(6) 7-;(14) (W)noc = epﬁCiOfpSJxﬁnoc
Here n is the unit normal to I'. The auxiliary problems combine as follows:
4
=> a1 (W) (2.10)
p=1

After substituting the stresses (2.8) into the necessary conditions for a solution (2.6), and taking note of the
simplifications resulting from (B.1), the following system of equations can be found for determining a,.

fzz X%C3333 da fzz x1%,Cy333da fzz x1C3333da 0 a; G
fzz x1x2C3333da fzz X§C3333 da fzz x,C333da 0 a| |G (2 | 1)
fzz x1Cy33da fzz x:C3333da sz Cyzda 0 as Gs '
0 0 0 J5,[Gs)da | Las Gy
where
G M, —f22x1T33da
G M, — |, x,T53da
Gj = _ZF3 _fzj ZT:da and G5 = [~2x10;C323 +X%C2323 +X§C1313]
3, 13
G4 —M3—f22X1T32 +x2T31da

Note from (B.1) that Cs333 = C}335, Where Ciss; is a constant, and recall that the integrals are taken over a
circular cross-section. Therefore, equation (2.11) becomes

Cll 0 0 0 a G
0  Cil 0 0 a| |G
0 0 Clyd 0 o e (2.12)
0 0 0 J,[Gs]da | | a G,

Here 7is the moment of inertia, and A is the cross-sectional area. Since Cjy35, A and I are never zero, then g,
(p = 1,2,3) are uniquely defined by (2.12). The integrand Gs can be simplified as follows when taking (B.1)
into account,

Gs = [ — 2x1x2C1303 4 x] Coo3 + x5C313]
= *[2sin*(0) cos?(0) + cos*(0) + sin®(0)]|Mass + r*[cos(0) + sin*(0)]Cy313 (2.13)
=My + r*Ciais
Note in Eq. (2.13) that it is possible for M,3,; to be negative, where as C313 is always positive. However,
trees in second growth stands are commonly less than one meter in diameter, then 3 < 2. Therefore, when

|Mp323| < |Claiz], (2.13) will be greater than zero except at » = 0, and so ay4 is uniquely defined by (2.12)
except possibly at » = 0.
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3. Stress functions when considering S333; a constant

Expand Eq. (2.8),

(1) S = Cuss(axy + axxs + a3) + 11 (W)

(2) 82 = Cosz(ar1xy + asxa + az) + Toa(W)

(3) S33 = C333g(a1x1 + arx,) + a}) + T31(W) (3 1)
(4) Sy = C23;2(a4x1) C2313(a4x2) + To3 (W) '
(5) Si3 = Cisznlasx)) — Ciziz(asxz) + T13(W)

(6) Si2 = Ciasz(aixy + axxs + a3) + T12(W)

Lyons et al. (2002b) showed that the in-plane stresses in cylindrical coordinates (S;ﬁ) are functions of the in-
plane stresses in Cartesian coordinates (S,4).

S;ﬁ = 0408y (3.2)
Note in (3.2) that S/ i and S, are 2 x 2 second order tensors, and that Q,; is the transformation

cos(0)  sin(6)

Oop = —sin(0) cos(0) (33)

Therefore, since (3.3) is an orthonormal transformation the in-plane stresses in Cartesian coordinates (S,z)
can be written as functions of the in-plane stresses in cylindrical coordinates (S;),

—1 1 —1 -1
Q/f",' QOL[) S;[f Q[i ro/) QQ‘PQ/;}'SP“/
1
Sy = Qﬁv Q. Sis

where 0, is the inverse of Q,.
Lyons et al. (2002b) proved for problems where the applied loads are independent of x5 that S;; = 0 and
so by (3.4)

S, =0 (3.5)
Substitute (3.5) into (3.1), then the first, second and sixth equations become

(3.4)

T = —Cuss(ayx, + as)
Ty = —Cyss(apx, + a3) (3.6)
T = —Ciass(apx, + a3)

Recall the displacement vector W = W(x;, x,), then
Exs(W) = Saan 111 + ST + S3333 3 + 28312712 = 0 (3.7)
Solve (3.7) for T33, then

1
Iy = T [S311 711 + S3322 T2 + 283312710 (3.8)
3333

Recall for generalized plane strain that EU = Syjmnun- Chirita (1979) notes this process must be re-
versible, therefore, 7j; = CysEys. This results in Ej; = Sjju ComrsEyrs, and

(i=s,j=r=1/2
i=rj=s5)=1/2
i=rj=sii=sj=r =1
all other 7, j,r,s = 0

1
Sijmn Conrs = 3 [00)s + 0,05 = (3.9)

S~ o~
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Substitute (3.6) into (3.8) while taking (3.9) into account, then
Ty3 = layx, + as][Sis; — Caans) (3.10)

Following procedures similar to those used by Lyons et al. (2002a) to determine the auxiliary generalized
plane strain stress functions, it can be shown that

T =0 for p=1,2,3 (3.11)
Therefore, by (2.10)

T,s(W) = asT5 (W) (3.12)
Recall the third and sixth equations of (2.9)

Tl(i)ﬂ +Tz(§)>2 = —X1(Ci323,1 +Ca323,2 ) + x2(Ci313,1 +Ci323,2)

@ @ (3.13)
Ti5'm + Ty'ny = (Cizi3xa — Cisoaxi)ny + (Cisasxa — Cosmsxy o

Substitute C,353 from (B.1) into (3.13), then
T 1 +T8 5 = 4 [Mys13 — Moss] cos(6)’ sin(6)
T m + Ty = 5 [Mysys — Mas] sin(40) (3.14)
Let 0 =%, where m = 1,2,. .., then (3.14) becomes

Tl(§)ﬂ1 +T2<;)’2 =0

(3.15)
T](g)n] + Tz(;)nz =0
The auxiliary generalized plane strain stresses in cylindrical coordinates are
(4)1 (4) ; (4)
15" = cos(0)T; +sin(0)T.
8" = cosOF +sin)7 516

T = —sin(0) TS + cos(0)TLY

Solve the second equation of (3.15) for TS) and substitute this into the first of (3.16), and note that
n; = cos(0) and n, = sin(0), then on I for 0 = (mn/2)

T = cos(0) (%W) +sin(0)T37 =0 (3.17)
Substitute (3.17) back into (3.15), then on I' for 6 = (mn/2)
7y =0 (3.18)
Substitute (3.17) and (3.18) into (3.16), then on I' for 0 = (mn/2)
V=1 =0 (3.19)
Substitute (3.19) into (3.12), then on I’ for 0 = (m=n/2)
T3=Ty=0 (3.20)

Lyons et al. (2002b) proved that the generalized plane stain stresses 7;; are independent of the cylindrical
coordinate 0, therefore, by (3.20) T1; = 753 = 0 on I'. Lyons et al. (2002b) proved that the generalized plane
strains could be represented by functions of the complex variable w = x| + ix,. Therefore, by Cauchy’s
integral formula, if 7,3 = 0 on I, then
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Ts=0onX=XUT (3.21)

The S;; stress functions may be formed by taking note of (3.5) and by substituting (3.10) and (3.21) into the
third, fourth, and fifth equations of (3.1), then

Si=8»=58,=0
S33 = S3323[apxﬂ + a3] (3.22)

823 = a4Coznzxy — a4Ci33x2

Si3 = asCi3nx; — a4Ci313%2

Substitute (3.22) into the necessary conditions for a solution, then the first two equations of (2.6) can be
shown to equal zero for all ay.
For example

2n R 2n R
/ / S13l”dl"d0 = / / a4C1323x1 - a4C1313X2}”dl”d0
0 0 0 0
2n R
= a4 K2323 — C1313} / / 7”3 sm(@) drdf =0 (323)
0 0

where R is the radius of I
Substitute (3.22) into the third equation of (2.6), then

2n R 2n R
/ / S33I"di”d0 = / / [a,,xp + 613]S3333_17"d}"d9 = —F'3
0 0 0 0

—F383333

a; = - (3.24)
Substitute (3.22) into the fourth equation of (2.6), then
2n R
/ / [X1S23 —X2S13]le"d6 = —M3
0 0
2t R (3.25)
014/ / [xl (X1C2323 - x2C1323) - xz(_x2C1313 +X1C1323)]7’d7’d9 = —M;
0 0
Substitute (B.1) into (3.25) and integrate, then
—10M
ay=— - (3.26)
R (2RK1313 + 2RKy305 + 5C1313)
Substitute (3.22) into the fifth and sixth equations of (2.6), then
2n R 2n R
/ / X1S33I”d}"d(9 = / / X1 [apxp + a3]S3333711’d7’d9 = Mz
0 0 0 0
R 2 R (3.27)
/ / x,833rdrdf = / / xola,x, + a3]S3333 ' rdrdf = —M,
0 0 0 0
Substitute (B.1) into (3.27) and integrate, then
4 —4
a; = —MrS3333, @y = —; M1S3333 (3.28)

nR* R4
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Substitute (3.24), (3.26) and (3.28) into (3.22), then the stress functions become
Si=8,=8,=0

s R
BT OaRY nRY R
~10M; (3.29)
Sy = C -C :
27 R (2RK 313 + 2RKys + 5Cuans) (Cossty = Crasma)
—10M;

= Cian3x1 — Cziaxz
R4 (2RK1313 + 2RK3303 + 5C1313) ( )

4. Stress functions when considering 3333 a function of r

There is a fundamental difference between the functions representing the shear stresses (S»3,S13) and the
normal stress (S33) in Eq. (3.29). In Eq. (3.29) S3; is independent of the material coefficients, while S»; and
S1; depend on the material coefficients. Therefore, provided the constitutive equation is of the form (B.1),
833 will only depend on the initial coordinates of a point and the applied loads, and not on the magnitudes
of the material coefficients. However, S»; and S); depend on the initial coordinates, the applied loads, and
the magnitudes of the material coefficients, and so will vary for different materials even if the constitutive
equation is similar to (B.1). The dependence of S»; and S;3 on the material coefficients is a result of de-
pendence of Sj313 and Sy3; (or Cj313 and Cr3,3) on the radial coordinate r. Thus, Section 4 will consider the
constitutive equation where S};,; and Ci;;; also depend on r.

Let

/ *
= Cu3 + 1" Ksss

/3333 333 i 333 4.1)

33 = 93333 + 7 Kz

Recall that the transformation (2.2) is a rotation about the x; axis, therefore,
Cypz=C *K
3333 3333 + 77 K3333 4.2)

83333 = S3333 + " K3333

Two important criteria must be satisfied in order to use Eq. (4.2) in the formulation developed in Section
3. First, the off diagonal terms in (2.11) were shown to equal zero when considering Ci333 a constant.
Substituting (4.2) into (2.11) it can be seen that the off diagonal terms remain equal to zero, and so Eq.
(2.12) is still valid. Second, in order to prove that S,; = 0 in (3.22) it was necessary for Cs333(a,x, + a3) to be
analytic. By Eq. (4.2) Cs333 is only a function of r. Therefore, Css3(a,x, + as) is composed of analytic
functions, coordinates, and constants and so must be analytic as well. Thus, the stress functions may be
found using the formulation in Section 3, when substituting (4.2) into (B.1).

Recall the Sj; stress functions

Sii=82=82=0
-1
S33 = Sqpslapx, + a3] (3.22)
823 = asCozpsxy — asCranzxa
Si3 = asCrapxy — asCrapzxa
As in Section 3, substitution of (3.22) into the necessary conditions for a solution results in the first two
equations of (2.6) being equal to zero for all a4. For example
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2n R 2n R
/ / S13}"dl"d0 = / / a4C1323x1 - a4C1313x2rdrd0
0 0 0 0

2n R
= a4 K2323 — C1313} / / 7”3 sm(H) drdf =0 (43)
0 0

Substitute (4.2) into (3.22) and this into the third equation of (2.6), then
2n R 2n R
/ / S33I"di”d0 = / / [a,,x,] + 613} S3333 + I’M3333} _ll"dl"dg = —F}
o Jo 0o Jo

2
_F}’M3333

az = 4.4
Ton [RM3333 — 3333 In (S3333 + RM3333) + S3333 In (53333)] (44)
Substitute (3.22) into the fourth equation of (2.6), then
2n R
/ / [X1S23 — )CzS]g,]l”dl”dO = —M3
o Jo
e R (4.5)
614/ / [Xl (X1C2323 - X2C1323) - Xz(—X2C1313 —|—x1C1323)]rdrd9 =—M;
o Jo
Substitute (B.1) into (4.5) and integrate, then
ay=— —10M; (4.6)
TR (2RK1313 + 2RK3323 + 5C1313)
Substitute (3.22) into the fifth and sixth equations of (2.6), then
2n R 2n R .
/ / x1S33rdrd0 = / / X1 [apxﬂ + 613] S3333 + I"M3333 rdrdf = M2
0 0 0 0 (4 7)
2n R 2n R . :
/ / XZS33}"dI"d0 = / / xz[apxp + a3] S3333 + VM3333 rdrdf = 7M1
o Jo 0 0
Substitute (4.2) into (4.7) and integrate, then
6M2M§333
a = — 5
n [2R3M33333 - 3S3333R2M32333 + 6RS§333M3333 + 6S;333 In (ﬁ)} ( )
T T o T - T 4.8
—6M; M3y
a = — 5
n {2R3M33333 — 383333R2M3;33 + 6RS3333M3333 + 653355 In (ﬁ)}

The stress functions can be found by substituting (4.4), (4.6) and (4.8) into (3.22). All the nonzero stress
functions in (3.22) are now dependent on the magnitudes of the material coefficients.

5. Summary

Consider the following four forms of the compliance tensor: (1) isotropic homogeneous, (2) orthotropic
with respect to the cylindrical coordinates and homogeneous, (3) orthotropic with respect to the cylindrical
coordinates and heterogeneous except for S;,,, S},, and Sj,,, being constant, and (4) orthotropic with
respect to the cylindrical coordinates and heterogeneous except for Sj,,, and Sj,,, being constant.

The stress functions for a cylindrical section of a tree subject to loads independent of x; can be classi-
fied by the assumptions implicit in the compliance tensor (Table 1). When the compliance coefficients are
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Table 1
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The dependence of the stress functions on the compliance coefficients

Constitutive equation

Magnitude of the in
plane stresses Si, S,

Dependence of the nonzero stresses on the
material coefficients

and S12
Isotropic homogeneous (Muskhelishvili, Zero All the stress functions are independent of the
1963) compliance coefficients
Orthotropic in cylindrical coordinates, ho- Zero All the stress functions are independent of the
mogeneous (Lyons et al., 2002a) compliance coefficients
Orthotropic in cylindrical coordinates, heter- Zero All the stress functions, except for Sy; and S5 are
ogeneous with S35, S},,, and S},,, constant independent of the compliance coefficients
Orthotropic in cylindrical coordinates, heter- Zero All the nonzero stress functions are dependent on

ogeneous with Sj,,, and Sj,,, constant the compliance coefficients

allowed to depend on the cylindrical coordinate r the stress functions become dependent on the compliance
coefficients. Consider two beams with similar shape and size, and subject to similar loads. If the constitutive
equations for both beams are dependent on r, but with dissimilar compliance coefficients, then the mag-
nitudes of the stresses will be dissimilar. This is a dramatic change from the case where the compliance
coefficients are homogeneous. If the compliance coefficients are homogeneous then the stresses will have
similar magnitudes in the two beams.

Appendix A. Transformation equations

The transformation equations taking the elasticity coefficients in cylindrical coordinates (C,fjkl) to Car-
tesian coordinates (Cjy,) (Lyons et al., 2002a).

Cun = CSC;H] + 2C§S§C;122 + 4C(§S§C;212 + Sgcézzz
Com = Sg 1111 + 2C§S§ ;122 + 4C§S§ /1212 + Cg 5222
C3333 = C;333

Coss = S;Cla13 + CoChans

Cisi3 = C{% 1313 + Sj 3323

Cioi = CiS;[Clyy

- 26‘1122 + C;222 - 2C;212} + [Cg + Sg:l 1212

Cin = CéS; ’1111 + Cg /1122 - 4C§S§ 1212 + Sg 2211 + C§S§ ;222

Ciizs = CiCy33 + 85 Chnis

Cin=0

Chiiz=0

Cinz = —GpSp [C(% /1111 - Cg 1122 - ch 1212 + 255 1212 + Sg 1122 - Sé ézzz]
Coz = S;C 133 + CoChoss

Cyz =0

Cpi3=0

Caniz = —CoSo[S5Cly1y = S3C1an = 285C110 + 2C5Clapy + CiCliny — CGChpy
Ci3 =0

Cz1i3=0
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Ci312 = —CpSy[Clayy — Chay

C13 = —CySp [C;m - Cézzz]

Cun =0

Cip=0 (A1)
Note, Cy = cos(0) and Sy = sin(0).

For the transformation equations taking the compliance coefficients in cylindrical coordinates (S;;;) to
Cartesian coordinates (S ), replace lejk, with Sz{jkl and Cjy with S, in Eq. (A.1).

Appendix B. Transformed compliance coefficients

The transformation equations that transform the nonzero compliance coefficients in Eq. (2.1) (Slfjk,) to
Cartesian coordinates (S;;) (Lyons et al., 2002b).
Sy = |Cy + 83181 + 7| CoMi + SyMan | + ZC(%S(%M + 4C5S5M
S22 = Sum
Snxs = Sux + r[CiMinss + S; Mo |
Stz = —SeCo[C [Suut + rMun] — C3Siz — 2C5Si12 + 25581212 + S5Siuz — S5 [Sun + rMan ] |
Soom = [C3 + Sg]Slm + F[Sngm + C:;Mzzzz} +2C;S;S1a + 4C;S; S
Sy = Suz + 7 [SiMizs + CiMans |
Sz = =SpCo [ S5 [Sunt + rMun | — SSu22 — 2C3S112 + 28581212 + CoSiiz — C; [Sun + rMay | |
S3333 = S3333
Ss312 = —SpCor[Mi133 — Maoss|
Snns = Suais + r[SiMizis + CoMas |
Sr13 = —SeCor [Miz13 — Moz
Siais = Sizi3 + r[CiMusis + S;Mans |
Siai2 = €385 [2Sum1 + 7[Minn + Maxn] — 2[Siiz + S]] + [Ch + S]Si212

(B.1)

Note, Cy = cos(0) and Sy = sin(0).
Similar equations can be formed for the elastic coeflicients by replacing the S;; by Ciju, S;4, by Cs» and
My, by Ky, in Eq. (B.1). -
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