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Abstract

Consider a tree that is composed of wood, which is orthotropic with respect to the cylindrical coordinate axes, where

the z-axis is directed up the center of the tree. When a section of a tree is considered as a Relaxed Saint-Venant’s

Problem the stresses in the plane of a transverse cross section will equal zero. By allowing some of, or all of the

compliance coefficients to be functions of the radial coordinate r, the structure of the stress functions can be funda-

mentally altered. If the compliance coefficient in the z-direction ðS3333Þ is allowed to remain constant, the Srz and Shz

shear stresses will be functions of the coordinates, dimensions, applied loads, and compliance coefficients, while the

other stresses will only be functions of the coordinates, dimensions and applied loads. If S3333 is also allowed to be a

function of r, then all the nonzero stresses will be functions of the coordinates, dimensions, applied loads, and com-

pliance coefficients.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lyons et al. (2002a) derived the stress and displacement equations for a cylindrical section of a tree
subject to loads independent of x3, and with compliance coefficients (in cylindrical coordinates) that were
constant throughout the section. The constraints placed on the compliance coefficients when assuming they
were constant, produced a compliance tensor that acted similarly to one for a transversely isotropic ma-
terial. Lyons et al. (2002b) noted that the published values for the compliance tensor for Pseudotsuga
menziesii (Douglas fir) precludes the possibility of the compliance tensor being constant in the cross section
of a tree. Lyons et al. (2002b) proposed a compliance tensor that was linearly dependent on the radial
coordinate r.

The objectives of this paper are to derive the stress equations for a cylindrical section of a tree for two
different constitutive equations that allow for different levels of heterogeneity. The first constitutive
equation considered will be similar to the one proposed by Lyons et al. (2002b) where only the minimum
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dependence on r was assumed in order to allow for the nonunique strains at r ¼ 0. The second constitutive
equation to be considered is similar to the constitutive equation proposed by Lyons et al. (2002b), except
that the compliance and elasticity coefficients in the z-direction will also be linear functions of the radial
coordinate r.

2. Constitutive equations and problem statement

The following constitutive equation in cylindrical coordinates was proposed by Lyons et al. (2002b) and
will be used to model a cylindrical section of a tree (prime denotes in cylindrical coordinates).

E0
ij ¼ S0

ijklS
0
kl ¼ bSijkl þ r�MijklcS0

kl

S0
ij ¼ C0

ijklE
0
kl ¼ Cijkl þ r�Kijkl

h i
E0
kl

9=
; in cylindrical coordinates ð2:1Þ

Here E0
ij and S0

ij are the infinitesimal strain tensor and Cauchy’s stress tensor, S0
ijkl and C0

ijkl are the com-
pliance and elasticity tensors, and Sijkl;Mijkl;Cijkl, and Kijkl are constants.

Lyons et al. (2002a) transformed the elasticity and compliance tensors from a cylindrical basis to a
Cartesian basis,

Cijkl ¼ QmiQnjQrkQslC0
mnrs

Sijkl ¼ QmiQnjQrkQslS0
mnrs

ð2:2Þ

where Qij ¼ QijðhÞ is a clockwise rotation about the x3-axis. The complete list of transformation equa-
tions is included in Appendix A. Given (2.2) the constitutive equations can be written in Cartesian coor-
dinates

Sij ¼ CijklEkl; Eij ¼ SijklSkl ð2:3Þ

Lyons et al. (2002b) showed the transformed compliance tensor could be simplified so that some of the
coefficients could remain constant, while still satisfying the constraints imposed by the nonunique strains in
the eh and er directions. The simplified equations for the transformed compliance tensor are included in
Appendix B.

With the compliance coefficients transformed into Cartesian coordinates, Eq. (B.1), it is possible to use
Iesan’s (1987) formulation to solve the relaxed Saint-Venant’s problem. Lyons et al. (2002a) considered a
cylindrical section of a tree as a relaxed Saint-Venant’s problem with loads independent of x3. The state-
ment of the relaxed Saint-Venant’s problem will be repeated here for convenience.

From now on in this paper, Greek indices will range from 1 to 2, while Latin indices range from 1 to 3
unless otherwise specified. Summation notation is used for repeated indices, and a comma followed by a
subscript will indicate a partial derivative with respect to the coordinate. Note the following special no-
tations will be used, the Kronecker delta function ðdijÞ, and the two-dimensional alternator symbol ðeabÞ.

Consider a cylindrical section of a tree as a cantilever beam with constant cross sections (Fig. 1). Let R1

be the open cross section at x3 ¼ 0, let R2 be the open cross section at x3 ¼ h, and let R be an arbitrary open
cross section with normal x3. The lateral surface of the cylinder will be P, while the boundary of an ar-
bitrary cross section is C. The closure of an arbitrary cross section will be R ¼ R [ C.

The resultant loads applied to the cross section at x3 ¼ 0 are the forces F and the moments M, and these
are represented by integral functions of the displacement vector u, where f ðuÞ ¼ F and mðuÞ ¼ M. The
lateral surface of the cylinder is unloaded, the cross section at R2 is fixed, and body loads will be ignored in
this analysis. The problem in Fig. 1 is of the class P1 as defined by Iesan (1987), where the resultant loads
acting on R are independent of x3 and Fa ¼ 0.
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Lyons et al. (2002a) presented the total displacements as

u0i ¼ ui þ uIi ð2:4Þ

where ui are the displacements resulting from strain, and uIi are displacement resulting from a rigid body
motion. The displacements resulting from strain, derived in a manner similar to that used by Iesan (1987),
are

ui ¼ dia

�

 aa

x23
2
þ ebaa4xbx3

�
þ di3½aqxq þ a3�x3 þ Wi ð2:5Þ

where ap are constants that will have to be determined using the boundary conditions, andW ¼ Wðx1; x2Þ is
a vector composed of the functions of integration.

Since the body forces are being ignored and the lateral surface of the cylinder is unloaded, the necessary
conditions for a solution imply that the sum of the stress fields acting on R2 must be in equilibrium with the
resultant loads acting on R1 therefore,Z

R2

Sa3ðuÞda ¼ 
faðuÞ ¼ 0;

Z
R2

S33ðuÞda ¼ 
f3ðuÞ ¼ 
F3;Z
R2

eabxaS3bðuÞda ¼ 
m3ðuÞ ¼ 
M3;

Z
R2

xaS33ðuÞda ¼ eabmbðuÞ ¼ eabMb ð2:6Þ

Substitute (2.5) into the definition of the infinitesimal strain tensor, the resulting strains are

E11ðuÞ ¼ W1;1 ; E22ðuÞ ¼ W2;2 ; E33ðuÞ ¼ ðaqxq þ a3Þ; E23ðuÞ ¼ 1
2
½a4x1 þ W3;2 �;

E13ðuÞ ¼ 1
2
½
a4x2 þ W3;1 �; E12ðuÞ ¼ 1

2
½W1;2 þW2;1 � ð2:7Þ

Substitute the strain tensor (2.7) into the constitutive equation (2.3), then the stress tensor in Cartesian
coordinates becomes

SijðuÞ ¼ Cij33ðaqxq þ a3Þ 
 a4Cija3eabxb þ TijðWÞ ð2:8Þ

The TijðWÞ ¼ CijkaWk;a, are the stresses resulting from the displacement vectorW, which is independent of
x3 and so forms a generalized plain strain problem. Iesan (1987) found that the generalized plane strain
problem could be separated into four auxiliary problems T ðpÞ

ij ðp ¼ 1; 2; 3; 4Þ, which are defined by the
following equilibrium equations (1)–(3) and boundary conditions (4)–(6).

Fig. 1. Cylindrical cantilever beam subject to loads independent of x3.
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ð1Þ T ðbÞ
ia ðWÞ;a þðCia33xbÞ;a ¼ 0

ð2Þ T ð3Þ
ia ðWÞ;a þðCia33Þ;a ¼ 0

ð3Þ T ð4Þ
ia ðWÞ;a 
 eqbðCiaq3xbÞ;a ¼ 0

ð4Þ T ðbÞ
ia ðWÞna ¼ 
Cia33xbna

ð5Þ T ð3Þ
ia ðWÞna ¼ 
Cia33na

ð6Þ T ð4Þ
ia ðWÞna ¼ eqbCiaq3xbna

ð2:9Þ

Here n is the unit normal to C. The auxiliary problems combine as follows:

TijðWÞ ¼
X4
p¼1

apT
ðpÞ
ij ðWÞ ð2:10Þ

After substituting the stresses (2.8) into the necessary conditions for a solution (2.6), and taking note of the
simplifications resulting from (B.1), the following system of equations can be found for determining ap.R

R2
x21C3333 da

R
R2
x1x2C3333 da

R
R2
x1C3333 da 0R

R2
x1x2C3333 da

R
R2
x22C3333 da

R
R2
x2C3333 da 0R

R2
x1C3333 da

R
R2
x2C3333 da

R
R2
C3333 da 0

0 0 0
R

R2
½G5�da

2
6664

3
7775

a1
a2
a3
a4

2
664

3
775 ¼

G1

G2

G3

G4

2
664

3
775 ð2:11Þ

where

G1

G2

G3

G4

2
664

3
775 ¼

M1 

R

R2
x1T33 da

M2 

R

R2
x2T33 da


F3 

R

R2
T33 da


M3 

R

R2
x1T32 þ x2T31 da

2
6664

3
7775 and G5 ¼ ½
2x1x2C1323 þ x21C2323 þ x22C1313�

Note from (B.1) that C3333 ¼ C0
3333, where C3333 is a constant, and recall that the integrals are taken over a

circular cross-section. Therefore, equation (2.11) becomes

C0
3333I 0 0 0
0 C0

3333I 0 0
0 0 C0

3333A 0
0 0 0

R
R2
½G5�da

2
664

3
775

a1
a2
a3
a4

2
664

3
775 ¼

G1

G2

G3

G4

2
664

3
775 ð2:12Þ

Here I is the moment of inertia, and A is the cross-sectional area. Since C0
3333, A and I are never zero, then ap

ðp ¼ 1; 2; 3Þ are uniquely defined by (2.12). The integrand G5 can be simplified as follows when taking (B.1)
into account,

G5 ¼
�

 2x1x2C1323 þ x21C2323 þ x22C1313

�
¼ r3½2 sin2ðhÞ cos2ðhÞ þ cos4ðhÞ þ sin2ðhÞ�M2323 þ r2½cos2ðhÞ þ sin2ðhÞ�C1313

¼ r3M2323 þ r2C1313

ð2:13Þ

Note in Eq. (2.13) that it is possible for M2323 to be negative, where as C1313 is always positive. However,
trees in second growth stands are commonly less than one meter in diameter, then r3 < r2. Therefore, when
jM2323j6 jC1313j, (2.13) will be greater than zero except at r ¼ 0, and so a4 is uniquely defined by (2.12)
except possibly at r ¼ 0.
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3. Stress functions when considering S3333 a constant

Expand Eq. (2.8),

ð1Þ S11 ¼ C1133ða1x1 þ a2x2 þ a3Þ þ T11ðWÞ
ð2Þ S22 ¼ C2233ða1x1 þ a2x2 þ a32Þ þ T22ðWÞ
ð3Þ S33 ¼ C3333ða1x1 þ a2x2 þ a3Þ þ T33ðWÞ
ð4Þ S23 ¼ C2332ða4x1Þ 
 C2313ða4x2Þ þ T23ðWÞ
ð5Þ S13 ¼ C1332ða4x1Þ 
 C1313ða4x2Þ þ T13ðWÞ
ð6Þ S12 ¼ C1233ða1x1 þ a2x2 þ a3Þ þ T12ðWÞ

ð3:1Þ

Lyons et al. (2002b) showed that the in-plane stresses in cylindrical coordinates ðS0
abÞ are functions of the in-

plane stresses in Cartesian coordinates ðSabÞ.
S0

ab ¼ QaqQbcSqc ð3:2Þ

Note in (3.2) that S0
ab and Sab are 2� 2 second order tensors, and that Qab is the transformation

Qab ¼ cosðhÞ sinðhÞ

 sinðhÞ cosðhÞ

� �
ð3:3Þ

Therefore, since (3.3) is an orthonormal transformation the in-plane stresses in Cartesian coordinates ðSabÞ
can be written as functions of the in-plane stresses in cylindrical coordinates ðS0

abÞ,
Q
1

bc Q

1
aq S

0
ab ¼ Q
1

bc Q

1
aq QaqQbcSqc

Sqc ¼ Q
1
bc Q


1
aq S

0
ab

ð3:4Þ

where Q
1
ab is the inverse of Qab.

Lyons et al. (2002b) proved for problems where the applied loads are independent of x3 that S0
ab ¼ 0 and

so by (3.4)

Sqc ¼ 0 ð3:5Þ
Substitute (3.5) into (3.1), then the first, second and sixth equations become

T11 ¼ 
C1133ðaqxq þ a3Þ
T22 ¼ 
C2233ðaqxq þ a3Þ
T12 ¼ 
C1233ðaqxq þ a3Þ

ð3:6Þ

Recall the displacement vector W ¼ Wðx1; x2Þ, then
E33ðWÞ ¼ S3311T11 þ S3322T22 þ S3333T33 þ 2S3312T12 ¼ 0 ð3:7Þ

Solve (3.7) for T33, then

T33 ¼ 
 1

S3333
½S3311T11 þ S3322T22 þ 2S3312T12� ð3:8Þ

Recall for generalized plane strain that Eij ¼ SijmnTmn. Chirita (1979) notes this process must be re-
versible, therefore, Tkl ¼ CklrsErs. This results in Eij ¼ SijmnCmnrsErs, and

SijmnCmnrs ¼
1

2
½dirdjs þ dijdjr� ¼

ði ¼ s; j ¼ rÞ ) 1=2
ði ¼ r; j ¼ sÞ ) 1=2
ði ¼ r; j ¼ s; i ¼ s; j ¼ rÞ ) 1
all other i; j; r; s ) 0

8>><
>>: ð3:9Þ
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Substitute (3.6) into (3.8) while taking (3.9) into account, then

T33 ¼ ½aqxq þ a3� S
1
3333

�

 C3333

�
ð3:10Þ

Following procedures similar to those used by Lyons et al. (2002a) to determine the auxiliary generalized
plane strain stress functions, it can be shown that

T ðpÞ
a3 ¼ 0 for p ¼ 1; 2; 3 ð3:11Þ

Therefore, by (2.10)

Ta3ðWÞ ¼ a4T
ð4Þ
a3 ðWÞ ð3:12Þ

Recall the third and sixth equations of (2.9)

T ð4Þ
13 ;1 þT ð4Þ

23 ;2 ¼ 
x1ðC1323;1 þC2323;2 Þ þ x2ðC1313;1 þC1323;2 Þ
T ð4Þ
13 n1 þ T ð4Þ

23 n2 ¼ ðC1313x2 
 C1323x1Þn1 þ ðC1323x2 
 C2323x1Þn2
ð3:13Þ

Substitute Ca3b3 from (B.1) into (3.13), then

T ð4Þ
13 ;1 þT ð4Þ

23 ;2 ¼ 4r M1313

�

M2323

�
cosðhÞ3 sinðhÞ

T ð4Þ
13 n1 þ T ð4Þ

23 n2 ¼
r
2

M1313

�

M2323

�
sinð4hÞ

ð3:14Þ

Let h ¼ mp
2
, where m ¼ 1; 2; . . ., then (3.14) becomes

T ð4Þ
13 ;1 þT ð4Þ

23 ;2 ¼ 0

T ð4Þ
13 n1 þ T ð4Þ

23 n2 ¼ 0
ð3:15Þ

The auxiliary generalized plane strain stresses in cylindrical coordinates are

T ð4Þ0
13 ¼ cosðhÞT ð4Þ

13 þ sinðhÞT ð4Þ
23

T ð4Þ0
23 ¼ 
 sinðhÞT ð4Þ

13 þ cosðhÞT ð4Þ
23

ð3:16Þ

Solve the second equation of (3.15) for T ð4Þ
13 and substitute this into the first of (3.16), and note that

n1 ¼ cosðhÞ and n2 ¼ sinðhÞ, then on C for h ¼ ðmp=2Þ

T ð4Þ0
13 ¼ cosðhÞ 
T ð4Þ

23 sinðhÞ
cosðhÞ

 !
þ sinðhÞT ð4Þ

23 ¼ 0 ð3:17Þ

Substitute (3.17) back into (3.15), then on C for h ¼ ðmp=2Þ

T ð4Þ0
23 ¼ 0 ð3:18Þ

Substitute (3.17) and (3.18) into (3.16), then on C for h ¼ ðmp=2Þ

T ð4Þ
13 ¼ T ð4Þ

23 ¼ 0 ð3:19Þ

Substitute (3.19) into (3.12), then on C for h ¼ ðmp=2Þ
T13 ¼ T23 ¼ 0 ð3:20Þ

Lyons et al. (2002b) proved that the generalized plane stain stresses Tij are independent of the cylindrical
coordinate h, therefore, by (3.20) T13 ¼ T23 ¼ 0 on C. Lyons et al. (2002b) proved that the generalized plane
strains could be represented by functions of the complex variable w ¼ x1 þ ix2. Therefore, by Cauchy’s
integral formula, if Ta3 ¼ 0 on C, then
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Ta3 ¼ 0 on R ¼ R [ C ð3:21Þ

The Sij stress functions may be formed by taking note of (3.5) and by substituting (3.10) and (3.21) into the
third, fourth, and fifth equations of (3.1), then

S11 ¼ S22 ¼ S12 ¼ 0

S33 ¼ S
1
3333½aqxq þ a3�

S23 ¼ a4C2323x1 
 a4C1323x2

S13 ¼ a4C1323x1 
 a4C1313x2

ð3:22Þ

Substitute (3.22) into the necessary conditions for a solution, then the first two equations of (2.6) can be
shown to equal zero for all a4.

For exampleZ 2p

0

Z R

0

S13rdrdh ¼
Z 2p

0

Z R

0

a4C1323x1 
 a4C1313x2rdrdh

¼ a4 K2323

�

 C1313

� Z 2p

0

Z R

0

r3 sinðhÞdrdh ¼ 0 ð3:23Þ

where R is the radius of C.
Substitute (3.22) into the third equation of (2.6), thenZ 2p

0

Z R

0

S33rdrdh ¼
Z 2p

0

Z R

0

½aqxq þ a3�S3333
1rdrdh ¼ 
F3

a3 ¼

F3S3333

pR2
ð3:24Þ

Substitute (3.22) into the fourth equation of (2.6), thenZ 2p

0

Z R

0

½x1S23 
 x2S13�rdrdh ¼ 
M3

a4

Z 2p

0

Z R

0

½x1ðx1C2323 
 x2C1323Þ 
 x2ð
x2C1313 þ x1C1323Þ�rdrdh ¼ 
M3

ð3:25Þ

Substitute (B.1) into (3.25) and integrate, then

a4 ¼

10M3

pR4 2RK1313 þ 2RK2323 þ 5C1313

� � ð3:26Þ

Substitute (3.22) into the fifth and sixth equations of (2.6), thenZ 2p

0

Z R

0

x1S33rdrdh ¼
Z 2p

0

Z R

0

x1½aqxq þ a3�S3333
1rdrdh ¼ M2Z 2p

0

Z R

0

x2S33rdrdh ¼
Z 2p

0

Z R

0

x2½aqxq þ a3�S3333
1rdrdh ¼ 
M1

ð3:27Þ

Substitute (B.1) into (3.27) and integrate, then

a1 ¼
4

pR4
M2S3333; a2 ¼


4
pR4

M1S3333 ð3:28Þ

C.K. Lyons / International Journal of Solids and Structures 39 (2002) 4615–4625 4621



Substitute (3.24), (3.26) and (3.28) into (3.22), then the stress functions become

S11 ¼ S22 ¼ S12 ¼ 0

S33 ¼
4x1M2

pR4

 4x2M1

pR4

 F3

pR2

S23 ¼

10M3

pR4 2RK1313 þ 2RK2323 þ 5C1313

� � ðC2323x1 
 C1323x2Þ

S13 ¼

10M3

pR4 2RK1313 þ 2RK2323 þ 5C1313

� � ðC1323x1 
 C1313x2Þ

ð3:29Þ

4. Stress functions when considering S3333 a function of r

There is a fundamental difference between the functions representing the shear stresses ðS23; S13Þ and the
normal stress ðS33Þ in Eq. (3.29). In Eq. (3.29) S33 is independent of the material coefficients, while S23 and
S13 depend on the material coefficients. Therefore, provided the constitutive equation is of the form (B.1),
S33 will only depend on the initial coordinates of a point and the applied loads, and not on the magnitudes
of the material coefficients. However, S23 and S13 depend on the initial coordinates, the applied loads, and
the magnitudes of the material coefficients, and so will vary for different materials even if the constitutive
equation is similar to (B.1). The dependence of S23 and S13 on the material coefficients is a result of de-
pendence of S1313 and S2323 (or C1313 and C2323Þ on the radial coordinate r. Thus, Section 4 will consider the
constitutive equation where S0

3333 and C0
3333 also depend on r.

Let

C0
3333 ¼ C3333 þ r�K3333

S0
3333 ¼ S3333 þ r�K3333

ð4:1Þ

Recall that the transformation (2.2) is a rotation about the x3 axis, therefore,

C3333 ¼ C3333 þ r�K3333

S3333 ¼ S3333 þ r�K3333
ð4:2Þ

Two important criteria must be satisfied in order to use Eq. (4.2) in the formulation developed in Section
3. First, the off diagonal terms in (2.11) were shown to equal zero when considering C3333 a constant.
Substituting (4.2) into (2.11) it can be seen that the off diagonal terms remain equal to zero, and so Eq.
(2.12) is still valid. Second, in order to prove that Sab ¼ 0 in (3.22) it was necessary for C3333ðaqxq þ a3Þ to be
analytic. By Eq. (4.2) C3333 is only a function of r. Therefore, C3333ðaqxq þ a3Þ is composed of analytic
functions, coordinates, and constants and so must be analytic as well. Thus, the stress functions may be
found using the formulation in Section 3, when substituting (4.2) into (B.1).

Recall the Sij stress functions

S11 ¼ S22 ¼ S12 ¼ 0

S33 ¼ S
1
3333½aqxq þ a3�

S23 ¼ a4C2323x1 
 a4C1323x2
S13 ¼ a4C1323x1 
 a4C1313x2

ð3:22Þ

As in Section 3, substitution of (3.22) into the necessary conditions for a solution results in the first two
equations of (2.6) being equal to zero for all a4. For example
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Z 2p

0

Z R

0

S13rdrdh ¼
Z 2p

0

Z R

0

a4C1323x1 
 a4C1313x2rdrdh

¼ a4 K2323

�

 C1313

� Z 2p

0

Z R

0

r3 sinðhÞdrdh ¼ 0 ð4:3Þ

Substitute (4.2) into (3.22) and this into the third equation of (2.6), thenZ 2p

0

Z R

0

S33rdrdh ¼
Z 2p

0

Z R

0

aqxq

�
þ a3

�
S3333
�

þ rM3333

�
1
rdrdh ¼ 
F3

a3 ¼

F3M2

3333

2p RM3333 
 S3333 ln S3333 þ RM3333

� �
þ S3333 ln S3333

� �� � ð4:4Þ

Substitute (3.22) into the fourth equation of (2.6), thenZ 2p

0

Z R

0

½x1S23 
 x2S13�rdrdh ¼ 
M3

a4

Z 2p

0

Z R

0

½x1ðx1C2323 
 x2C1323Þ 
 x2ð
x2C1313 þ x1C1323Þ�rdrdh ¼ 
M3

ð4:5Þ

Substitute (B.1) into (4.5) and integrate, then

a4 ¼

10M3

pR4 2RK1313 þ 2RK2323 þ 5C1313

� � ð4:6Þ

Substitute (3.22) into the fifth and sixth equations of (2.6), thenZ 2p

0

Z R

0

x1S33rdrdh ¼
Z 2p

0

Z R

0

x1½aqxq þ a3� S3333
�

þ rM3333

�
1
rdrdh ¼ M2Z 2p

0

Z R

0

x2S33rdrdh ¼
Z 2p

0

Z R

0

x2½aqxq þ a3� S3333
�

þ rM3333

�
1
rdrdh ¼ 
M1

ð4:7Þ

Substitute (4.2) into (4.7) and integrate, then

a1 ¼
6M2M4

3333

p 2R3M3
3333 
 3S3333R2M2

3333 þ 6RS23333M3333 þ 6S33333 ln
S3333

S3333þRM3333

� �h i

a2 ¼

6M1M4

3333

p 2R3M3
3333 
 3S3333R2M2

3333 þ 6RS23333M3333 þ 6S33333 ln
S3333

S3333þRM3333

� �h i
ð4:8Þ

The stress functions can be found by substituting (4.4), (4.6) and (4.8) into (3.22). All the nonzero stress
functions in (3.22) are now dependent on the magnitudes of the material coefficients.

5. Summary

Consider the following four forms of the compliance tensor: (1) isotropic homogeneous, (2) orthotropic
with respect to the cylindrical coordinates and homogeneous, (3) orthotropic with respect to the cylindrical
coordinates and heterogeneous except for S0

3333, S
0
1212 and S0

1122 being constant, and (4) orthotropic with
respect to the cylindrical coordinates and heterogeneous except for S0

1212 and S0
1122 being constant.

The stress functions for a cylindrical section of a tree subject to loads independent of x3 can be classi-
fied by the assumptions implicit in the compliance tensor (Table 1). When the compliance coefficients are
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allowed to depend on the cylindrical coordinate r the stress functions become dependent on the compliance
coefficients. Consider two beams with similar shape and size, and subject to similar loads. If the constitutive
equations for both beams are dependent on r, but with dissimilar compliance coefficients, then the mag-
nitudes of the stresses will be dissimilar. This is a dramatic change from the case where the compliance
coefficients are homogeneous. If the compliance coefficients are homogeneous then the stresses will have
similar magnitudes in the two beams.

Appendix A. Transformation equations

The transformation equations taking the elasticity coefficients in cylindrical coordinates ðC0
ijklÞ to Car-

tesian coordinates ðCijklÞ (Lyons et al., 2002a).
C1111 ¼ C4

hC
0
1111 þ 2C2

hS
2
hC

0
1122 þ 4C2

hS
2
hC

0
1212 þ S4hC

0
2222

C2222 ¼ S4hC
0
1111 þ 2C2

hS
2
hC

0
1122 þ 4C2

hS
2
hC

0
1212 þ C4

hC
0
2222

C3333 ¼ C0
3333

C2323 ¼ S2hC
0
1313 þ C2

hC
0
2323

C1313 ¼ C2
hC

0
1313 þ S2hC

0
2323

C1212 ¼ C2
hS

2
h C0

1111

�

 2C0

1122 þ C0
2222 
 2C0

1212

�
þ C4

h

�
þ S4h

�
C0
1212

C1122 ¼ C2
hS

2
hC

0
1111 þ C4

hC
0
1122 
 4C2

hS
2
hC

0
1212 þ S4hC

0
2211 þ C2

hS
2
hC

0
2222

C1133 ¼ C2
hC

0
1133 þ S2hC

0
2233

C1123 ¼ 0

C1113 ¼ 0

C1112 ¼ 
ChSh C2
hC

0
1111

�

 C2

hC
0
1122 
 2C2

hC
0
1212 þ 2S2hC

0
1212 þ S2hC

0
1122 
 S2hC

0
2222

�
C2233 ¼ S2hC

0
1133 þ C2

hC
0
2233

C2223 ¼ 0

C2213 ¼ 0

C2212 ¼ 
ChSh S2hC
0
1111

�

 S2hC

0
1122 
 2S2hC

0
1212 þ 2C2

hC
0
1212 þ C2

hC
0
1122 
 C2

hC
0
2222

�
C3323 ¼ 0

C3313 ¼ 0

Table 1

The dependence of the stress functions on the compliance coefficients

Constitutive equation Magnitude of the in

plane stresses S11, S22,
and S12

Dependence of the nonzero stresses on the

material coefficients

Isotropic homogeneous (Muskhelishvili,

1963)

Zero All the stress functions are independent of the

compliance coefficients

Orthotropic in cylindrical coordinates, ho-

mogeneous (Lyons et al., 2002a)

Zero All the stress functions are independent of the

compliance coefficients

Orthotropic in cylindrical coordinates, heter-

ogeneous with S0
3333, S

0
1212 and S 0

1122 constant

Zero All the stress functions, except for S23 and S13 are
independent of the compliance coefficients

Orthotropic in cylindrical coordinates, heter-

ogeneous with S0
1212 and S 0

1122 constant

Zero All the nonzero stress functions are dependent on

the compliance coefficients
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C3312 ¼ 
ChSh C0
3311 
 C0

3322

� �
C2313 ¼ 
ChSh C0

1313 
 C0
2323

� �
C2312 ¼ 0

C1312 ¼ 0 ðA:1Þ

Note, Ch ¼ cosðhÞ and Sh ¼ sinðhÞ.
For the transformation equations taking the compliance coefficients in cylindrical coordinates ðS0

ijklÞ to
Cartesian coordinates ðSijklÞ, replace C0

ijkl with S0
ijkl and Cijkl with Sijkl in Eq. (A.1).

Appendix B. Transformed compliance coefficients

The transformation equations that transform the nonzero compliance coefficients in Eq. (2.1) ðS0
ijklÞ to

Cartesian coordinates ðSijklÞ (Lyons et al., 2002b).

S1111 ¼ bC4
h þ S4hcS1111 þ rbC4

hM1111 þ S4hM2222c þ 2C2
hS

2
hS1122 þ 4C2

hS
2
hS1212

S1122 ¼ S1122

S1133 ¼ S1133 þ r C2
hM1133

�
þ S2hM2233

�
S1112 ¼ 
ShCh C2

h S1111
��

þ rM1111

�

 C2

hS1122 
 2C2
hS1212 þ 2S2hS1212 þ S2hS1122 
 S2h S1111

�
þ rM2222

��
S2222 ¼ C4

h

�
þ S4h

�
S1111 þ r S4hM1111

�
þ C4

hM2222

�
þ 2C2

hS
2
hS1122 þ 4C2

hS
2
hS1212

S2233 ¼ S1133 þ r S2hM1133

�
þ C2

hM2233

�
S2212 ¼ 
ShCh S2h S1111

��
þ rM1111

�

 S2hS1122 
 2C2

hS1212 þ 2S2hS1212 þ C2
hS1122 
 C2

h S1111
�

þ rM2222

��
S3333 ¼ S3333

S3312 ¼ 
ShChr M1133

�

M2233

�
S2323 ¼ S1313 þ r S2hM1313

�
þ C2

hM2323

�
S2313 ¼ 
ShChr M1313

�

M2323

�
S1313 ¼ S1313 þ r C2

hM1313

�
þ S2hM2323

�
S1212 ¼ C2

hS
2
h 2S1111
�

þ r M1111

�
þM2222

�

 2 S1122
�

þ S1212
��

þ C4
h

�
þ S4h

�
S1212

ðB:1Þ

Note, Ch ¼ cosðhÞ and Sh ¼ sinðhÞ.
Similar equations can be formed for the elastic coefficients by replacing the Sijkl by Cijkl, Sijkl by Cijkl, and

Mijkl by Kijkl, in Eq. (B.1).
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